
Embedded Linux:
Systems and Software

Jon Sevy
Geometric and Intelligent

Computing Lab
Drexel University

May 2008

Copyright 2008, Jonathan Sevy

Page 2

 Embedded Linux Systems Overview
 Creating, Configuring and Building Embedded Linux Software

Systems
 Linux Boot Process
 Linux Board Port
 Linux Device Driver and Kernel Programming
 Embedded Linux Application Development
 Open-Source Software Licenses
 Tools and Resources

Table of Contents

Embedded Linux Systems
Overview

Page 4

Embedded Linux Systems Overview

 Components
 Kernel
 Libraries
 Applications
 System initialization and scripts
 Root filesystem
 Runtime Linux System
 Kernel space vs user space
 Virtual/physical memory
 Development system requirements

 Activities
 Resources

Page 5

Embedded Linux

 Any small system running Linux
 “Headless” (no display – wireless router, set-top box, e.g.)
 User-interactive (PDA, cellphone, etc.)

 More than just kernel!
 Applications provide system-specific functionality
 Shared libraries support applications
 Kernel manages running applications, hardware drivers

 Think of as stripped-down desktop system
 Unneeded features removed
 Embedded-specific features added

Page 6

Linux Software System Components

 Kernel
 Manages tasks, drivers

 Drivers
 Manage hardware resources

 Root filesystem
 Libraries
 Applications (including GUI)
 Scripts
 User data

Hardware

Drivers,
processor­specific kernel mods

Linux Kernel

Libraries

Applications

Root Filesystem

Page 7

Kernel

 Current Linux kernel: 2.6 series
 Fully supports ARM processors (including

ARM926)
 Complete networking, filesystem, other

support
 Configurable

 Build in only those features needed
 Multiple possible execution modes

 Execute-in-place (XIP)
 Compressed/loadable

Hardware

Drivers,
processor­specific kernel mods

Linux Kernel

Libraries

Applications

Root Filesystem

Page 8

Drivers

 Manage hardware resources (peripherals)
 Exist for many standard peripherals
 Built-in to kernel or loadable at run-time
 Well-documented process for creating custom

drivers (see references)

Hardware

Linux Kernel

Drivers

Libraries

Applications

Root Filesystem

Page 9

Root Filesystem

 Directory tree containing needed libraries, scripts, applications
 Organization usually follows standard Unix filesystem

conventions (/bin, /sbin, /etc, etc.)
 Stored as standard Linux filesystem type

 Typically cramfs or jffs2 compressed filesystem when in Flash
 Ext2/3 for disk

Page 10

Libraries

 C library
 Standard utility functions, interface to kernel

functionality
 Several variants:

¬ Glibc: big and full-featured
¬ uClibc: small, configurable, targeted for embedded

systems (usual choice)
 Others as needed

 Pthreads
 ALSA
 GUI support

Hardware

Drivers,
processor­specific kernel mods

Linux Kernel

Libraries

Applications

Root Filesystem

Page 11

Applications

 Created as standard Posix/Unix applications
 Stored in filesystem, loaded to RAM for

execution
 Standard applications

 Busybox
¬ Standard Unix utilities in single package
¬ Configurable feature support

 Custom applications
 GUI applications
 Anything system-specific (background

network applications, etc.)

Hardware

Drivers,
processor­specific kernel mods

Linux Kernel

Libraries

Applications
Root Filesystem

Page 12

Scripts

 Used to initalize/shut down system
 Others for access control, configuration
 Stored in /etc directory of root filesystem

Page 13

GUI

 Provide desktop environment
 Window environment for GUI application

creation and management
 Many standard apps available

(productivity, multimedia, etc.)
 Qtopia Phone Edition

 Commercial, royalty-based
 Complete suite of applications
 Used in existing handset designs

¬ Motorola A760, A780
¬ Philips Nexperia Cellular System Solution

9000 reference platform

Page 14

Runtime Linux System

 Serial console
 Apps started at system initialization
 Daemons (always running services)
 Kernel threads (e.g., JFFS2 garbage collection)

Page 15

Memory Considerations

 Kernel space vs user space
MMU enforces protection
Requires copy or MMU map (mmap) to exchange data

 Virtual memory addresses
Application address space (0x0)
Kernel address space (0xC000 0000)
 I/O address space (0xF000 0000)
 /dev/mem, /dev/kmem, devmem2

¬ Driver interface to inspect memory, used by devmem2/peek-poke

Page 16

Activity and Resources

 Activity
Skulk around an embedded Linux system
Use devmem2 to inspect memory
Use ps, top to see running system info
 cat some /proc files to get kernel info

 Resources
Building Embedded Linux Systems, Karim Yaghmour,

O'Reilly
Embedded Linux: Hardware, Software and Interfacing, Craig

Hollabaugh, Addison Wesley

Creating, Configuring and
Building Embedded Linux
Software Systems

Page 18

Creating, Configuring and Building Embedded

Linux Systems

 Kernel
 Libraries
 Applications
 System initialization and scripts
 Root filesystem
 Loading on target

 Activities
 Resources

Page 19

Kernel - Configuration

 Acquiring source
http://www.kernel.org
 full ARM support standard

 Configuring with menuconfig
make menuconfig ARCH=arm
built-in vs loadable modules: y vs m
 .config/config.h and defconfig files
 command line: root=/dev/mtdblock2 rootfstype=jffs2

console=ttyS0,115200 init=/linuxrc
asm -> asm-arm and arch -> arch-vx115 after configuration

http://www.kernel.org/

Page 20

Kernel - Building

 CROSS_COMPILE environment variable in top-level Makefile
Set to prefix of toolchain; arm-none-linux-gnueabi- for

CodeSourcery toolchain
Can set on command line or as environment variable

 make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
 zImage: in arch/arm/boot

¬ Self-extracting compressed kernel

 loadable modules: in .tmp_versions
¬ can install into root filesystem with correct subdirectory structure

with modules_install and INSTALL_MOD_PATH:
make modules_install INSTALL_MOD_PATH=../rootfs/rootfs

Page 21

C library: uClibc or glibc

 uClibc
 configuring with menuconfig:

¬ make menuconfig
¬ need to set cross-compilation setting

building
¬ make

 glibc
 can use binary from toolchain
 can configure and build with configure and make (see next)

Page 22

Other Libraries

 Typical library (e.g., ALSA)
 configuring with configure:

¬ ./configure <options>
¬ sets up files for building (may create Makefiles, configuration

headers)

 finding/setting options
¬ ./configure –help
¬ target:

– target=arm-none-linux

¬ cross-compiler
– CC=arm-none-linux-gnueabi-gcc as configure option, or
– export CC=arm-none-linux-gnueabi-gcc; ./configure <other-options>

 saving command for later (in config.log)
 config.cache (may need to delete between reconfiguration)

Page 23

Applications

 Busybox
bundles most needed Unix apps
 configuring with make menuconfig
building with make

 Other (e.g., ALSA utils)
 configuring with configure

¬ may need to add CFLAGS, LDFLAGS variables with paths to

needed headers and libraries (e.g., ALSA lib)

building with make

Page 24

Scripts and Initializations

 linuxrc
 first user code run by kernel; specified in kernel command line (init=linuxrc)
 does some basic filesystem mounting, etc.

 init.d and rc2.d directories and links
 shell scripts to start/stop services in init.d
 arg to each will be start, stop, restart
 links to scripts in rc2.d, executed by init

 init
 runs scripts in /etc/rc2.d directory for system service startup and

shutdown
 scripts starting with 'S' run at startup with argument “start”
 scripts starting with 'K' run at shutdown with argument “stop”
 scripts run in lexical order (hence numbers in names)

Page 25

Root Filesystem

 Create tree on development host
 create required directories as part of build process

 Populate with apps, libraries and scripts
 /dev: use mknod to create device nodes
 links to RAM disk for /tmp, /var for Flash-based systems

 Package as filesystem for loading on target
 use mkfs variants to create binary filesystem object (e.g., mkfs.jffs2)

 Loading on target
 Create srecs using objcopy, load to Flash

Page 26

Activity and Resources

 Activity
 Configure kernel, uClibc, Busybox
 Configure and add an open-source library to distribution
 Configure and add an open-source application to distribution

 Resources
 Building Embedded Linux Systems, Karim Yaghmour, O'Reilly.
 Embedded Linux: Hardware, Software and Interfacing, Craig Hollabaugh,

Addison Wesley.
 Busybox: http://www.busybox.net
 uClibc: http://www.uclibc.org/

ARM Linux Boot Process

Page 28

Linux Boot Process

 Bootloader requirements
 zImage decompression
 Kernel code
 System initialization

 Activities
 Resources

Page 29

Bootloader Requirements

 Virtually none if use head-<mach>.S to set machine/arch

numbers
 Can pass tag structures to kernel for configuration
 Can use bootloader (uboot, blob, ...) to read kernel zImage

from filesystem if desired

Page 30

zImage Decompression

 arch/arm/boot/compressed/head.S
 include arch-specific code

arch/arm/boot/compressed/head-<mach>.S

decompress kernel to RAM
 jump to start of kernel in RAM (zreladdr)

¬ zreladdr = ZRELADDR = zreladdr-y
¬ zreladdr-y specified in arch/arm/mach-<mach>/Makefile.boot

 arch/arm/boot/compressed/head-<mach>.S
added to build in arch/arm/boot/compressed/Makefile
 linked into head.S by linker section declaration: .section

“start”
 flush cache, turn off cache and MMU, set machine and arch

number

Page 31

Kernel Code

 arch/arm/kernel/head.S: stext
 look up machine and arch structures
 set up initial kernel page tables, init MMU
 copy data segment, zero BSS
 jump to start_kernel

 init/main.c: start_kernel
 initialize subsystems and built-in drivers
 start init process

Page 32

Resources

 Linux Kernel Cross-Reference
hypertext-linked browsable kernel source
http://lxr.linux.no/

Linux Board Port

Page 34

Linux Board Port

 Machine and processor ID
 Memory configuration
 Flash configuration
 Kconfig and Makefile modifications
 Platform includes: include/asm-arm/arch-xxx
 Platform source files: arch/arm/mach-xxx
 Interrupts
 Serial/console driver

 Activities
 Resources

Note:
Use port to an ARM-based processor vx115 and platform

vx115_vep development board as example

Page 35

Machine and Processor ID

 Machine and processor ID
arch/arm/tools/mach-types

¬ define machine and arch numbers and macros
¬ arch/arm/Makefile
¬ machine-$(CONFIG_ARCH_VX115) := vx115

 Boot files
arch/arm/boot/compressed/head-vx115.S, Makefile

¬ flush cache, turn off cache and MMU
¬ set up machine and arch numbers

Page 36

Memory Configuration

 include/asm-arm/arch-vx115/memory.h
 #define PHYS_OFFSET 0x24200000

¬ physical address of kernel code base
 #define PAGE_OFFSET (0xc4200000UL)

¬ virtual address of kernel code base
 #define MEM_SIZE 0x01e00000
 used in virtual-physical memory translation functions
 replaced by defines in discontiguous memory file if needed

 arch/arm/Makefile
 textaddr-$(CONFIG_ARCH_VX115) := 0xc4208000

¬ kernel entry point (virtual); address of stext in link map
(vmlinux.lds)

 arch/arm/mach-vx115/Makefile.boot
 zreladdr-y := 0x24208000

¬ physical address where decompression routine jumps when done
 arch/arm/mach-vx115/vx115_vep.c

 .phys_ram = 0x24200000 in MACHINE_DESC struct
¬ start of RAM for use by kernel

Page 37

Platform-Specific Directories

 include/asm-arm/arch-vx115
 contains platform-specific header files

¬ hardware.h, others
 configuration process generates symbolic links

¬ include/asm -> /include/asm-arm
¬ include/asm/arch -> /include/asm-arm/arch-vx115

 arch/arm/mach-vx115
 contains platform-specific source files

¬ main board files (vx115_vep.c)
¬ interrupt, DMA, other SoC-related files

Page 38

Platform Includes: include/asm-arm/arch-vx115

 Required headers
hardware.h

¬ platform hardware register defines
– note use of virtual register addresses

¬ included into arm generic hardware.h (include/asm-
arm/hardware.h)

 system.h
¬ define arch_idle, arch_reset functions to indicate behavior when

idle or on reset
dma.h

¬ define MAX_DMA_ADDRESS to indicate all of memory is DMA-able
 io.h

¬ define IO_SPACE_LIMIT to mark all memory as possible I/O space
 timex.h

¬ define CLOCK_TICK_RATE, used in jiffies.h for system timing
params

param.h
¬ define HZ to set kernel tick rate different from 100/sec if desired

Page 39

Platform Includes: include/asm-arm/arch-vx115

 Required headers (cont.)
 serial.h

¬ used to put in standard (8250) serial port defines if using these
 system.h

¬ define arch_idle, arch_reset functions to indicate behavior when
idle or on reset

 vmalloc.h
¬ some memory allocation defines
¬ moved to common kernel code in 2.6.18 since same in all

platforms
uncompress.h

¬ output routines for zImage decompression stage
entry-macro.S

¬ very low-level interrupt handling (described below)

 Other headers
anything hardware-ish

Page 40

Platform Source Files: arch/arm/mach-vx115

 vx115_vep.c
main board-specific initialization file
 I/O mapping

¬ define I/O virtual-physical map in map_desc struct array
¬ define map_io function for MACHINE_DESC struct

 Interrupt initialization
¬ define board-specific irq_init funtion for MACHINE_DESC struct

Device specification
¬ define platform_device and amba_device structs for use in driver

configuration
Machine initialization function

¬ vx115_init_machine
¬ Register devices; will be matched with appropriate drivers for

driver configuration

Page 41

Platform Source Files: arch/arm/mach-vx115

 vx115_vep.c (cont.)
 Fixup function

¬ set memory bank info
MACHINE_DESC struct for platform

¬ pointers to platform functions defined above, and system timer
¬ linked into list of supported machines; retrieved during boot

Page 42

Platform Source Files: arch/arm/mach-vx115

 irq.c
define functions to ack, mask, unmask irqs
define irqchip struct

¬ function pointers for irq ack, mask, unmask
define irq initialization function

¬ initialize controller, handlers to use specified irqchip

Page 43

Platform Source Files: arch/arm/mach-vx115

 time.c
System timer: define platform timer tick function

¬ just manages hardware timer, calls system timer_tick function
define initialization function, sys_timer struct for use in

MACHINE_DESC macro

Page 44

Platform Source Files: arch/arm/mach-vx115

 Others
other board-specific source files
gpio.c

¬ gpio interface
dma.c

¬ dma controller driver
 ssp.c

¬ ssp driver; probably belongs in drivers/char

Page 45

Kconfig and Makefile Modifications

 Have Kconfig and Makefile in each subdir

 Kconfig
add selectors for defines in code and Makefiles
defines generated into .config (also config.h for code

header)

 Makefiles
add to lists of files to be compiled and linked into that

subdir's objects
obj-y: built-in code file list
obj-m: loadable module file list

Page 46

Interrupts

 include/asm/arch/entry-macro.S
defines assembly routine get_irqnr_and_base
 returns the IRQ number from controller

 arch/arm/mach-vx115/irq.c
defines irq mask/ack routines (discussed above)

 common kernel routines
arch/arm/kernel/entry-armv.S

¬ low-level assembly vector handling
¬ calls machine-specific get_irqnr_and_base and common

asm_do_IRQ
arch/arm/kernel/irq.c

¬ asm_do_IRQ: (eventually) calls IRQ-specific handler

Page 47

Flash Configuration

 drivers/mtd/maps/vx115_flash.c
define map_info struct indicating parameters for Flash

devices (base addr, bank width)
define mtd_partition struct for each bank giving logical

partitions
define init_vx115_vep_flash function

¬ register flash map and partition info
¬ module_init macro places function pointer in init section so will be

called during system initialization

Page 48

Serial Console Driver

 provide serial driver for kernel control
 complex structure; routines for input/output and control

through ioctl's
 specify console on kernel command line

 console=/dev/ttyS0

Page 49

Extracting Changes: Diff and Patch

 Pull out changes so can be applied to vanilla kernel
 can deliver just changes rather than whole kernel

 Use diff and patch
diff: find all differences
patch: apply differences to fresh kernel

 Creating patch
need both unmodified source tree and modified source tree

directories
diff -Nur (unmodified-source-dir) (modified-source-dir) >

mods.patch
extra args to adjust diff process

¬ --exclude=CVS
¬ -I '.*$Id:.*' -I '.*$Id$.*' -I '.*$Revision:.*' -I '.*$Source:.*'

-I'.*$Date:.*' -I '.*$Header:.*' -I '.*$Author:.*'
 Applying patch

 from within top-level directory of “vanilla” source tree
patch -p1 < mods.patch

Page 50

Activity and Resources

 Activity
work with diff and patch

 Resources
 Porting the Linux Kernel to a New ARM Platform (2.4-series

kernel): http://linux-

7110.sourceforge.net/howtos/netbook_new/porting2arm_ale

ph.pdf
 Linux Porting Guide (uses MIPS as example):

http://www.embedded.com/shared/printableArticle.jhtml?arti

cleID=9900048

Linux Device Driver and
Kernel Programming

Page 52

• Device and Driver Model
• Loadable vs built-in drivers
• Kernel space vs user space
• Kernel memory allocation
• Synchronization
• DMA
• Interrupt handlers
• Resource (I/O space) request
• Hardware access functions (read/write)
• Proc and sysfs filesystems
• Debugging
• Driver types
• Netfilter architecture

Linux Device Driver and Kernel Programming

Page 53

Common Driver Interface

 init and exit
declared with module_init and module_exit macros

¬ called at system initialization/shutdown time
¬ for loadable modules, called when module inserted or removed

from kernel
 register/unregister device_driver struct:

struct device_driver vx1xx_driver = {
 .name = "vx1xx-uart",
 .bus = &platform_bus_type,
 .probe = vx1xx_probe,
 .remove = vx1xx_remove,
 .suspend = vx1xx_suspend,
 .resume = vx1xx_resume,
};

¬ bus: used in device-driver matching (see next slide)
¬ probe and remove

– called when device registered/unregistered during system
initialization

– for “pluggable” devices, called when device “insertion” or “removal”
detected

¬ suspend and resume
– called by power management subsystem to inform device to power

down/up

Page 54

Device and Driver Model

 Goal: separate mechanism (driver) from config info (device)
 Device specification

Provided in platform-specific code (vx115_vep.c)
 Device hierarchy (parents)
 Registration

platform_add_devices, amba_device_register in board setup
function

driver_register in driver init function; bus type in device_driver
struct

 Device and driver matching and configuration
 registering devices and drivers causes match to occur

¬ driver's probe function called to configure driver with handle to
device data

often text-based match (ex. platform devices)

Page 55

Loadable vs Built-in Drivers

 Virtually all drivers support both modes
 module_init macro

built-in driver: places function pointer in init section so will
be called during system initialization

 loadable module: just aliases function to init_module; called
by module loader

 __init function qualifier: places function in init section so
memory can be reclaimed after boot

 lsmod, insmod, rmmod and modprobe applications
 lsmod: list currently loaded modules
 insmod: loads specified module (need complete path)
modprobe: loads specified module and all modules it

depends on
¬ looks in /lib/modules for named module
¬ uses modules.dep file generated by depmod to resolve module

dependencies
¬ if you add a new module, need to add new modules.dep to use

modprobe

Page 56

Kernel Space vs User Space

 Each user application uses same virtual address space (usually
0-based)
MMU maps each app's virtual addresses to its personal

physical pages; map changes on context switch
 if give kernel pointer to userspace buffer and get context

switch, what happens to buffer reference? :-(
 copy_from_user, copy_to_user

 transfer between user process buffer and kernel buffer
make sure pages aren't swapped out (not an issue in most

embedded systems)
 mmap and remap_pfn_range

map a kernel buffer so it can be directly accessed from user
application

mmap function provided as part of driver interface (see
below)

 kernel function remap_pfn_range does actual mapping

Page 57

Kernel Memory Allocation

 kmalloc, kfree: allocate and free memory in kernel space
allocates virtually and physically contiguous buffer, returns

virtual address
 flag specifies whether can sleep or not during allocation

 vmalloc
allocates virtually contiguous buffer , returns virtual

addresses
 can allocate larger buffers, but less efficient

Page 58

Lists

 Use built-in Linux list functions
gives doubly-linked list
 struct list_head
 list_add, list_add_tail, list_splice, list_del, list_empty
 list_entry(entry, type, member);

 container_of macro
get structure containing specified field

¬ specified field need not be first field
 container_of(ptr, type, member)
 list_entry just #defined to container_of

Page 59

Synchronization: Semaphores and Spinlocks

 semaphores and mutexes
usual semaphore semantics
down_interruptible, down_trylock, up
applicable to thread context only (suspends)

 spinlocks
 just disable/reenable interrupts in uniprocessor (non-SMP)

system
 spin_lock_irqsave, spin_unlock_irqrestore
protects against threads and ISRs

Page 60

Synchronization: Completions

 wait until signalled that some operation is complete
 use completion struct and functions

 struct completion c;
 init_completion(&c);
wait_for_completion(&c); // wait until completion signalled
 complete(&c); // to wake up a process waiting for completion

 wait applicable in thread context only (suspends); completion
signalled from thread or ISR context

Page 61

Synchronization: Wait Queues

 sleep until awakened and specified condition true
 wait_event_interruptible(wait_queue, condition);

wait on queue until awakened and condition true
 wake_up_interruptible(wait_queue);

awaken waiting task(s)
 wait applicable in thread context only (suspends); wake_up

can be signalled from thread or ISR context

 Notes
oddly, can't assume condition true when awakened

¬ might be awakened due to signal
¬ might have been out-raced by another task

 should protect condition test with semaphore/spinlock
¬ guard against race conditions

Page 62

DMA

 buffer allocation
dma_map_single/dma_unmap_single with kmalloc/kfree

¬ kmalloc/kfree handle allocation
¬ map functions handle cache coherency

– transfer ownership of buffer to/from DMA controller
– extra direction argument makes cache sync more efficient

¬ also have dma_map_sg, dma_unmap_sg for mapping scatter-
gather lists

dma_alloc_coherent, dma_free_coherent
allocates non-cacheable buffer; less efficient

 kernel DMA interface
 request_dma, free_dma: request/free a DMA channel
 set_dma_addr, set_dma_count, set_dma_mode, set_dma_sg:

configure DMA channel
¬ Note that set only single address; assumes DMA “target”

dedicated for each channel
enable_dma, disable_dma: start or end DMA transfer

Page 63

Interrupt Handling

 Interrupt registration (low-level ISR)
 request_irq(unsigned int irq, irq_handler_t handler, unsigned

long flags, char *name, void *context);

 Interrupt handler (low-level)
 irqreturn_t irq_handler(int irq, void *context, struct pt_regs

*regs);
 return IRQ_HANDLED, IRQ_NONE (not handled)

 Synchronization
Use spinlocks to protect against low-level IRQ handler

 “Bottom halves”
Defer interrupt processing - “high-level” interrupt handlers
Use tasklets and work queues to carry out processing

Page 64

Interrupt Handling: Tasklets

 Context
 run in interrupt context (with interrupts enabled), so can't

suspend
done as a softirq: run after all hardware interrupts

processed
¬ kernel calls do_softirq at end of low-level interrupt processing

 runs once when scheduled

 Use
 struct tasklet_struct tasklet;
void tasklet_handler(unsigned long data);
 tasklet_init(&tasklet, tasklet_handler, data);
 tasklet_schedule(&tasklet); // schedule handler to be

executed

 Synchronization
Use spinlocks to protect against tasklet

Page 65

Interrupt Handling: Work Queues

 Context
 run in process context, so can suspend
 run as kernel thread, so higher priority than user threads
 runs once when scheduled

 Use
 struct work_struct work;
 void work_handler(void *context);
 INIT_WORK(&work, work_handler, context);
 schedule_work(&work);
Note: changed in 2.6.20; context replaced with pointer to

work struct...

 Synchronization
Use semaphore to protect against work queue

Page 66

Resource Requests

 Request access to hardware region (registers, etc.)
 request_region, release_region: I/O space request
 request_mem_region, release_mem_region: memory region

requests

Page 67

Resource Requests and Hardware Access

 Resource (I/O space) request
Request access to hardware region (registers, etc.) during

driver initialization
 request_region, release_region: I/O space request
 request_mem_region, release_mem_region: memory region

requests

 Hardware access functions (read/write)
 readb, readw, readl, writeb, writew, writel
 read/write 8/16/32-bit quantity from specified (virtual)

address
 Preferable for memory access over direct pointer references

¬ intends to make drivers portable to systems with separate I/O
space

¬ Less relevant with embedded system

Page 68

Proc Filesystem

 “Virtual” directory created and maintained by kernel
appear as entries under /proc

 Provides control and statistics interface from userspace into
drivers
 just read like would with normal files (can use cat, e.g.)
 Functions implemented by drivers which wish to expose an

interface
 Use

#include <linux/proc_fs.h>
 create_proc_entry, remove_proc_entry

¬ request kernel to create entry for driver (usually during driver
init)

¬ specify parent directory within /proc, functions for read and write
proc read function

¬ just return info about driver (often text)
proc write function

¬ use supplied info to control the driver

Page 69

Debugging

 JTAG
best for kernel code and built-in drivers
not so useful for loadable modules or app code

 printk
Usual method of kernel and driver debugging: print

messages to system log and console
 procfs

Can read out driver statistics/state
 objdump

 Inspecting binaries (symbol info, disassembly, etc.)
 ksymoops

Decode kernel stack dumps into readable messages

Page 70

Driver Types

 Driver interface depends on type
 Character

 stream- or character-oriented devices (UARTS, GPIOs,
 Block

Block-oriented devices (disks, etc.)
 Network

Drivers for network devices (Ethernet, Wifi, etc.)
 Higher-level frameworks

Driver provides interface required by higher-level framework
USB
MTD
SD/MMC
 ...

Page 71

Character Drivers

 Interface: file operations (fops) struct
struct file_operations {

– struct module *owner;
– int (*open) (struct inode *, struct file *);
– int (*release) (struct inode *, struct file *);
– ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
– ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
– int (*mmap) (struct file *, struct vm_area_struct *);
– loff_t (*llseek) (struct file *, loff_t, int);
– unsigned int (*poll) (struct file *, struct poll_table_struct *);
– int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
– int (*flush) (struct file *);
– int (*fsync) (struct file *, struct dentry *, int datasync);
– ... (many more fields – note order changed!)

};

 Implement functions for open, close, read, write, seek, etc.
¬ Can leave many null if don't care about operation

Page 72

Character Driver Registration

 major/minor number reservation
major/minor used to map /dev node to driver
 register_chrdev_region(dev_t from, unsigned count, const

char *name)
– reserve range of major/minor numbers for device

 driver registration
have driver data structure

¬ contains fields for whatever driver needs to do its work (buffers,
lists, ...)

¬ has embedded cdev struct
use cdev_init(cdev, fops) to initialize embedded cdev struct

with file ops
use cdev_add(cdev, device_number, range) to register

embedded cdev struct with kernel

Page 73

Driver Struct, Inodes and Files

 Issue: how to get driver data structure for use in fops functions
 can use static struct, but limits number of devices supported

by driver
better: allocate struct for each device, stash so passed in as

function arg

 Approach: stash device struct pointer in file structure
open function passes inode and file pointers

¬ inode has pointer to driver's cdev
– was initialized when cdev_init called

extract pointer to driver struct which contains cdev struct
with container_of

 set file->private_data field so can retrieve driver struct
when get other calls
¬ other file_operations functions pass just file struct, not inode

Page 74

Activity and Resources

 Activity
use objdump and ksymoops
Create simple character driver

¬ File ops interface
¬ Proc interface
¬ See example driver source code

– Can build on x86 platform; has “device” module that registers device
that matches with driver

 Resources
 Linux Device Drivers, 3rd edition, Alessandro Rubini, O'Reilly

¬ online version at http://lwn.net/Kernel/LDD3/ (pdf)
¬ 2nd edition in HTML: http://www.xml.com/ldd/chapter/book/

 Linux Kernel Development, Robert Love, Sams

Embedded Linux
Application Development
Overview

Page 76

C development
Posix development
Makefiles
Driver interface
Library linking
Debugging
C++
Shell script development

Activities
Resources

Embedded Linux Application Development

Page 77

 Just regular Unix Posix development
 processes: fork, exec, wait
 threads: pthreads and attributes
 synchronization: condition variables, semaphores and mutexes
 communication: pipes, queues, shared memory
 file I/O: open, close, read, write
 signals
 sockets for networking

C Application Development

Page 78

 Driver interface
 file nodes and standard file operations

 Libraries
Toolchain provides standard C libs
Specify paths to custom libs and headers

 C++
 standard C++ development
Use libstdc++

C Application Development (cont.)

Page 79

 Debugging with printf
Send messages to console or system log

 Debugging with gdbserver
Build gdbserver for platform
Build app with debugging symbols (-g when compiling)
Start app to be debugged with gdbserver

¬ gdbserver <serial-device> <app-to-debug>
¬ gdbserver /dev/ttyS1 /bin/ls

Connect to gdbserver over serial with gdb-capable debugger
¬ gdb, Insight, etc.

Debugging

Page 80

 Use standard apps in shell script
 Pipes, redirection
 if, case
 Environment variables
 Notes

Different shell variants have different syntax
Arithmetic a pain

Shell Script Development

Page 81

 Activity
Debug an app with gdbserver

 Resources
POSIX specs: http://www.unix.org/single_unix_specification/
Advanced Programming in the UNIX Environment, Richard

Stevens, Addison-Wesley, 1992, http://www.kohala.com/start/

Activity and Resources

Open-Source
Software Licenses

Page 83

Open-Source Software Licenses

GPLv2
Common properties
LGPL
MIT, modified-FreeBSD

Resources

Page 84

 Use at your own risk
no guarantee
don't sue me if it doesn't work

 Issues
unknowingly incorporating software which contains patented

material
 combining software with incompatible licenses

Common Properties

Page 85

 GNU Public License
 Must deliver source together with binary to customers

no customer, no delivery (internal corporate uses)
no requirement to “feed back” mods or make them “publicly”

available – just must make source available to “customer” if
deliver software

 Examples
 Linux kernel

 Pros
 tend to get mods fed back to common software baseline –

everybody benefits
 Cons

 linking extends GPL to non-GPL software - must provide source
for all software linked with GPL software

GPLv2

Page 86

 Lesser or “Library” GPL
Software linked with LGPL software not covered by LGPL -

source delivery not required
Source code of LGPL code itself (together with any mods) must

be made available to customer
 Examples

glibc
 Pros

Has allowed for non-open-source Linux application
development
¬ Situation less clear for kernel code such as loadable modules

 Cons
Still required to deliver source of libraries

LGPL

Page 87

 No source delivery required
 Pros

preferred by businesses worried about exposing proprietary
stuff

 Cons
has led to fragmentation (e.g., multiple BSD implementations)
 slower progress (e.g., no good open-source Flash filesystem

implementation in BSD's, even though iPhone uses BSD-
derived OS)

MIT, Modified-BSD

Page 88

 Open-source software licenses described:
http://www.gnu.org/licenses/license-list.html

 Understanding Open Source and Free Software Licensing,
Andrew St. Laurent, O'Reilly, 2004,
http://www.oreilly.com/catalog/osfreesoft/book/

Resources

Linux Tools and Resources

Page 90

 gcc cross-compilation toolchain
Pre-built: Code Sourcery: http://www.codesourcery.com/
Build your own: Dan Kegel's CrossTool:

http://kegel.com/crosstool/
 Insight (includes gdbserver): http://sourceware.org/insight/
 Ksymoops

Tools

Page 91

 Linux Device Drivers, 3rd edition, Alessandro Rubini, O'Reilly
online version at http://lwn.net/Kernel/LDD3/ (pdf)
2nd edition in HTML: http://www.xml.com/ldd/chapter/book/

 Linux Kernel Development, Robert Love, Sams
 Building Embedded Linux Systems, Karim Yaghmour, O'Reilly
 Embedded Linux: Hardware, Software and Interfacing, Craig Hollabaugh,

Addison Wesley
 Understanding Open Source and Free Software Licensing, Andrew St.

Laurent, O'Reilly, 2004
 Advanced Programming in the UNIX Environment, Richard Stevens,

Addison-Wesley
 Kernel Documentation subdirectory

Resources - Books

Page 92

 Linux kernel cross-reference website: http://lxr.linux.no/
 Linux Device Drivers, 3rd edition, Alessandro Rubini, O'Reilly

online version at http://lwn.net/Kernel/LDD3/ (pdf)
2nd edition in HTML: http://www.xml.com/ldd/chapter/book/

 ARM Linux website: http://www.arm.linux.org.uk/
arm-linux-kernel mailing list

 CELF Wiki: http://tree.celinuxforum.org/pubwiki/moin.cgi
 CELF Embedded Linux Conference:

http://www.celinux.org/elc2007/index.html
 Linux Journal: http://www.linuxjournal.com/
 Linux Magazine: http://www.linux-mag.com/
 POSIX specs: http://www.unix.org/single_unix_specification/

Resources - Web

Page 93

 Porting the Linux Kernel to a New ARM Platform (2.4-series kernel):

http://linux-
7110.sourceforge.net/howtos/netbook_new/porting2arm_ale
ph.pdf

 Linux Porting Guide (uses MIPS as example):
http://www.embedded.com/shared/printableArticle.jhtml?articleID=990
0048

 Linux kernel source repository: http://www.kernel.org
 Busybox: http://www.busybox.net
 uClibc: http://www.uclibc.org/
 Qtopia: http://www.trolltech.com/products/qtopia/phone.html
 Open-source software licenses described:

http://www.gnu.org/licenses/license-list.html

Resources – Web (cont.)

Page 94

