
Embedded Linux:
Systems and Software

Jon Sevy
Geometric and Intelligent

Computing Lab
Drexel University

May 2008

Copyright 2008, Jonathan Sevy

Page 2

 Embedded Linux Systems Overview
 Creating, Configuring and Building Embedded Linux Software

Systems
 Linux Boot Process
 Linux Board Port
 Linux Device Driver and Kernel Programming
 Embedded Linux Application Development
 Open-Source Software Licenses
 Tools and Resources

Table of Contents

Embedded Linux Systems
Overview

Page 4

Embedded Linux Systems Overview

 Components
 Kernel
 Libraries
 Applications
 System initialization and scripts
 Root filesystem
 Runtime Linux System
 Kernel space vs user space
 Virtual/physical memory
 Development system requirements

 Activities
 Resources

Page 5

Embedded Linux

 Any small system running Linux
 “Headless” (no display – wireless router, set-top box, e.g.)
 User-interactive (PDA, cellphone, etc.)

 More than just kernel!
 Applications provide system-specific functionality
 Shared libraries support applications
 Kernel manages running applications, hardware drivers

 Think of as stripped-down desktop system
 Unneeded features removed
 Embedded-specific features added

Page 6

Linux Software System Components

 Kernel
 Manages tasks, drivers

 Drivers
 Manage hardware resources

 Root filesystem
 Libraries
 Applications (including GUI)
 Scripts
 User data

Hardware

Drivers,
processorspecific kernel mods

Linux Kernel

Libraries

Applications

Root Filesystem

Page 7

Kernel

 Current Linux kernel: 2.6 series
 Fully supports ARM processors (including

ARM926)
 Complete networking, filesystem, other

support
 Configurable

 Build in only those features needed
 Multiple possible execution modes

 Execute-in-place (XIP)
 Compressed/loadable

Hardware

Drivers,
processorspecific kernel mods

Linux Kernel

Libraries

Applications

Root Filesystem

Page 8

Drivers

 Manage hardware resources (peripherals)
 Exist for many standard peripherals
 Built-in to kernel or loadable at run-time
 Well-documented process for creating custom

drivers (see references)

Hardware

Linux Kernel

Drivers

Libraries

Applications

Root Filesystem

Page 9

Root Filesystem

 Directory tree containing needed libraries, scripts, applications
 Organization usually follows standard Unix filesystem

conventions (/bin, /sbin, /etc, etc.)
 Stored as standard Linux filesystem type

 Typically cramfs or jffs2 compressed filesystem when in Flash
 Ext2/3 for disk

Page 10

Libraries

 C library
 Standard utility functions, interface to kernel

functionality
 Several variants:

¬ Glibc: big and full-featured
¬ uClibc: small, configurable, targeted for embedded

systems (usual choice)
 Others as needed

 Pthreads
 ALSA
 GUI support

Hardware

Drivers,
processorspecific kernel mods

Linux Kernel

Libraries

Applications

Root Filesystem

Page 11

Applications

 Created as standard Posix/Unix applications
 Stored in filesystem, loaded to RAM for

execution
 Standard applications

 Busybox
¬ Standard Unix utilities in single package
¬ Configurable feature support

 Custom applications
 GUI applications
 Anything system-specific (background

network applications, etc.)

Hardware

Drivers,
processorspecific kernel mods

Linux Kernel

Libraries

Applications
Root Filesystem

Page 12

Scripts

 Used to initalize/shut down system
 Others for access control, configuration
 Stored in /etc directory of root filesystem

Page 13

GUI

 Provide desktop environment
 Window environment for GUI application

creation and management
 Many standard apps available

(productivity, multimedia, etc.)
 Qtopia Phone Edition

 Commercial, royalty-based
 Complete suite of applications
 Used in existing handset designs

¬ Motorola A760, A780
¬ Philips Nexperia Cellular System Solution

9000 reference platform

Page 14

Runtime Linux System

 Serial console
 Apps started at system initialization
 Daemons (always running services)
 Kernel threads (e.g., JFFS2 garbage collection)

Page 15

Memory Considerations

 Kernel space vs user space
MMU enforces protection
Requires copy or MMU map (mmap) to exchange data

 Virtual memory addresses
Application address space (0x0)
Kernel address space (0xC000 0000)
 I/O address space (0xF000 0000)
 /dev/mem, /dev/kmem, devmem2

¬ Driver interface to inspect memory, used by devmem2/peek-poke

Page 16

Activity and Resources

 Activity
Skulk around an embedded Linux system
Use devmem2 to inspect memory
Use ps, top to see running system info
 cat some /proc files to get kernel info

 Resources
Building Embedded Linux Systems, Karim Yaghmour,

O'Reilly
Embedded Linux: Hardware, Software and Interfacing, Craig

Hollabaugh, Addison Wesley

Creating, Configuring and
Building Embedded Linux
Software Systems

Page 18

Creating, Configuring and Building Embedded

Linux Systems

 Kernel
 Libraries
 Applications
 System initialization and scripts
 Root filesystem
 Loading on target

 Activities
 Resources

Page 19

Kernel - Configuration

 Acquiring source
http://www.kernel.org
 full ARM support standard

 Configuring with menuconfig
make menuconfig ARCH=arm
built-in vs loadable modules: y vs m
 .config/config.h and defconfig files
 command line: root=/dev/mtdblock2 rootfstype=jffs2

console=ttyS0,115200 init=/linuxrc
asm -> asm-arm and arch -> arch-vx115 after configuration

http://www.kernel.org/

Page 20

Kernel - Building

 CROSS_COMPILE environment variable in top-level Makefile
Set to prefix of toolchain; arm-none-linux-gnueabi- for

CodeSourcery toolchain
Can set on command line or as environment variable

 make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
 zImage: in arch/arm/boot

¬ Self-extracting compressed kernel

 loadable modules: in .tmp_versions
¬ can install into root filesystem with correct subdirectory structure

with modules_install and INSTALL_MOD_PATH:
make modules_install INSTALL_MOD_PATH=../rootfs/rootfs

Page 21

C library: uClibc or glibc

 uClibc
 configuring with menuconfig:

¬ make menuconfig
¬ need to set cross-compilation setting

building
¬ make

 glibc
 can use binary from toolchain
 can configure and build with configure and make (see next)

Page 22

Other Libraries

 Typical library (e.g., ALSA)
 configuring with configure:

¬ ./configure <options>
¬ sets up files for building (may create Makefiles, configuration

headers)

 finding/setting options
¬ ./configure –help
¬ target:

– target=arm-none-linux

¬ cross-compiler
– CC=arm-none-linux-gnueabi-gcc as configure option, or
– export CC=arm-none-linux-gnueabi-gcc; ./configure <other-options>

 saving command for later (in config.log)
 config.cache (may need to delete between reconfiguration)

Page 23

Applications

 Busybox
bundles most needed Unix apps
 configuring with make menuconfig
building with make

 Other (e.g., ALSA utils)
 configuring with configure

¬ may need to add CFLAGS, LDFLAGS variables with paths to

needed headers and libraries (e.g., ALSA lib)

building with make

Page 24

Scripts and Initializations

 linuxrc
 first user code run by kernel; specified in kernel command line (init=linuxrc)
 does some basic filesystem mounting, etc.

 init.d and rc2.d directories and links
 shell scripts to start/stop services in init.d
 arg to each will be start, stop, restart
 links to scripts in rc2.d, executed by init

 init
 runs scripts in /etc/rc2.d directory for system service startup and

shutdown
 scripts starting with 'S' run at startup with argument “start”
 scripts starting with 'K' run at shutdown with argument “stop”
 scripts run in lexical order (hence numbers in names)

Page 25

Root Filesystem

 Create tree on development host
 create required directories as part of build process

 Populate with apps, libraries and scripts
 /dev: use mknod to create device nodes
 links to RAM disk for /tmp, /var for Flash-based systems

 Package as filesystem for loading on target
 use mkfs variants to create binary filesystem object (e.g., mkfs.jffs2)

 Loading on target
 Create srecs using objcopy, load to Flash

Page 26

Activity and Resources

 Activity
 Configure kernel, uClibc, Busybox
 Configure and add an open-source library to distribution
 Configure and add an open-source application to distribution

 Resources
 Building Embedded Linux Systems, Karim Yaghmour, O'Reilly.
 Embedded Linux: Hardware, Software and Interfacing, Craig Hollabaugh,

Addison Wesley.
 Busybox: http://www.busybox.net
 uClibc: http://www.uclibc.org/

ARM Linux Boot Process

Page 28

Linux Boot Process

 Bootloader requirements
 zImage decompression
 Kernel code
 System initialization

 Activities
 Resources

Page 29

Bootloader Requirements

 Virtually none if use head-<mach>.S to set machine/arch

numbers
 Can pass tag structures to kernel for configuration
 Can use bootloader (uboot, blob, ...) to read kernel zImage

from filesystem if desired

Page 30

zImage Decompression

 arch/arm/boot/compressed/head.S
 include arch-specific code

arch/arm/boot/compressed/head-<mach>.S

decompress kernel to RAM
 jump to start of kernel in RAM (zreladdr)

¬ zreladdr = ZRELADDR = zreladdr-y
¬ zreladdr-y specified in arch/arm/mach-<mach>/Makefile.boot

 arch/arm/boot/compressed/head-<mach>.S
added to build in arch/arm/boot/compressed/Makefile
 linked into head.S by linker section declaration: .section

“start”
 flush cache, turn off cache and MMU, set machine and arch

number

Page 31

Kernel Code

 arch/arm/kernel/head.S: stext
 look up machine and arch structures
 set up initial kernel page tables, init MMU
 copy data segment, zero BSS
 jump to start_kernel

 init/main.c: start_kernel
 initialize subsystems and built-in drivers
 start init process

Page 32

Resources

 Linux Kernel Cross-Reference
hypertext-linked browsable kernel source
http://lxr.linux.no/

Linux Board Port

Page 34

Linux Board Port

 Machine and processor ID
 Memory configuration
 Flash configuration
 Kconfig and Makefile modifications
 Platform includes: include/asm-arm/arch-xxx
 Platform source files: arch/arm/mach-xxx
 Interrupts
 Serial/console driver

 Activities
 Resources

Note:
Use port to an ARM-based processor vx115 and platform

vx115_vep development board as example

Page 35

Machine and Processor ID

 Machine and processor ID
arch/arm/tools/mach-types

¬ define machine and arch numbers and macros
¬ arch/arm/Makefile
¬ machine-$(CONFIG_ARCH_VX115) := vx115

 Boot files
arch/arm/boot/compressed/head-vx115.S, Makefile

¬ flush cache, turn off cache and MMU
¬ set up machine and arch numbers

Page 36

Memory Configuration

 include/asm-arm/arch-vx115/memory.h
 #define PHYS_OFFSET 0x24200000

¬ physical address of kernel code base
 #define PAGE_OFFSET (0xc4200000UL)

¬ virtual address of kernel code base
 #define MEM_SIZE 0x01e00000
 used in virtual-physical memory translation functions
 replaced by defines in discontiguous memory file if needed

 arch/arm/Makefile
 textaddr-$(CONFIG_ARCH_VX115) := 0xc4208000

¬ kernel entry point (virtual); address of stext in link map
(vmlinux.lds)

 arch/arm/mach-vx115/Makefile.boot
 zreladdr-y := 0x24208000

¬ physical address where decompression routine jumps when done
 arch/arm/mach-vx115/vx115_vep.c

 .phys_ram = 0x24200000 in MACHINE_DESC struct
¬ start of RAM for use by kernel

Page 37

Platform-Specific Directories

 include/asm-arm/arch-vx115
 contains platform-specific header files

¬ hardware.h, others
 configuration process generates symbolic links

¬ include/asm -> /include/asm-arm
¬ include/asm/arch -> /include/asm-arm/arch-vx115

 arch/arm/mach-vx115
 contains platform-specific source files

¬ main board files (vx115_vep.c)
¬ interrupt, DMA, other SoC-related files

Page 38

Platform Includes: include/asm-arm/arch-vx115

 Required headers
hardware.h

¬ platform hardware register defines
– note use of virtual register addresses

¬ included into arm generic hardware.h (include/asm-
arm/hardware.h)

 system.h
¬ define arch_idle, arch_reset functions to indicate behavior when

idle or on reset
dma.h

¬ define MAX_DMA_ADDRESS to indicate all of memory is DMA-able
 io.h

¬ define IO_SPACE_LIMIT to mark all memory as possible I/O space
 timex.h

¬ define CLOCK_TICK_RATE, used in jiffies.h for system timing
params

param.h
¬ define HZ to set kernel tick rate different from 100/sec if desired

Page 39

Platform Includes: include/asm-arm/arch-vx115

 Required headers (cont.)
 serial.h

¬ used to put in standard (8250) serial port defines if using these
 system.h

¬ define arch_idle, arch_reset functions to indicate behavior when
idle or on reset

 vmalloc.h
¬ some memory allocation defines
¬ moved to common kernel code in 2.6.18 since same in all

platforms
uncompress.h

¬ output routines for zImage decompression stage
entry-macro.S

¬ very low-level interrupt handling (described below)

 Other headers
anything hardware-ish

Page 40

Platform Source Files: arch/arm/mach-vx115

 vx115_vep.c
main board-specific initialization file
 I/O mapping

¬ define I/O virtual-physical map in map_desc struct array
¬ define map_io function for MACHINE_DESC struct

 Interrupt initialization
¬ define board-specific irq_init funtion for MACHINE_DESC struct

Device specification
¬ define platform_device and amba_device structs for use in driver

configuration
Machine initialization function

¬ vx115_init_machine
¬ Register devices; will be matched with appropriate drivers for

driver configuration

Page 41

Platform Source Files: arch/arm/mach-vx115

 vx115_vep.c (cont.)
 Fixup function

¬ set memory bank info
MACHINE_DESC struct for platform

¬ pointers to platform functions defined above, and system timer
¬ linked into list of supported machines; retrieved during boot

Page 42

Platform Source Files: arch/arm/mach-vx115

 irq.c
define functions to ack, mask, unmask irqs
define irqchip struct

¬ function pointers for irq ack, mask, unmask
define irq initialization function

¬ initialize controller, handlers to use specified irqchip

Page 43

Platform Source Files: arch/arm/mach-vx115

 time.c
System timer: define platform timer tick function

¬ just manages hardware timer, calls system timer_tick function
define initialization function, sys_timer struct for use in

MACHINE_DESC macro

Page 44

Platform Source Files: arch/arm/mach-vx115

 Others
other board-specific source files
gpio.c

¬ gpio interface
dma.c

¬ dma controller driver
 ssp.c

¬ ssp driver; probably belongs in drivers/char

Page 45

Kconfig and Makefile Modifications

 Have Kconfig and Makefile in each subdir

 Kconfig
add selectors for defines in code and Makefiles
defines generated into .config (also config.h for code

header)

 Makefiles
add to lists of files to be compiled and linked into that

subdir's objects
obj-y: built-in code file list
obj-m: loadable module file list

Page 46

Interrupts

 include/asm/arch/entry-macro.S
defines assembly routine get_irqnr_and_base
 returns the IRQ number from controller

 arch/arm/mach-vx115/irq.c
defines irq mask/ack routines (discussed above)

 common kernel routines
arch/arm/kernel/entry-armv.S

¬ low-level assembly vector handling
¬ calls machine-specific get_irqnr_and_base and common

asm_do_IRQ
arch/arm/kernel/irq.c

¬ asm_do_IRQ: (eventually) calls IRQ-specific handler

Page 47

Flash Configuration

 drivers/mtd/maps/vx115_flash.c
define map_info struct indicating parameters for Flash

devices (base addr, bank width)
define mtd_partition struct for each bank giving logical

partitions
define init_vx115_vep_flash function

¬ register flash map and partition info
¬ module_init macro places function pointer in init section so will be

called during system initialization

Page 48

Serial Console Driver

 provide serial driver for kernel control
 complex structure; routines for input/output and control

through ioctl's
 specify console on kernel command line

 console=/dev/ttyS0

Page 49

Extracting Changes: Diff and Patch

 Pull out changes so can be applied to vanilla kernel
 can deliver just changes rather than whole kernel

 Use diff and patch
diff: find all differences
patch: apply differences to fresh kernel

 Creating patch
need both unmodified source tree and modified source tree

directories
diff -Nur (unmodified-source-dir) (modified-source-dir) >

mods.patch
extra args to adjust diff process

¬ --exclude=CVS
¬ -I '.*$Id:.*' -I '.*$Id$.*' -I '.*$Revision:.*' -I '.*$Source:.*'

-I'.*$Date:.*' -I '.*$Header:.*' -I '.*$Author:.*'
 Applying patch

 from within top-level directory of “vanilla” source tree
patch -p1 < mods.patch

Page 50

Activity and Resources

 Activity
work with diff and patch

 Resources
 Porting the Linux Kernel to a New ARM Platform (2.4-series

kernel): http://linux-

7110.sourceforge.net/howtos/netbook_new/porting2arm_ale

ph.pdf
 Linux Porting Guide (uses MIPS as example):

http://www.embedded.com/shared/printableArticle.jhtml?arti

cleID=9900048

Linux Device Driver and
Kernel Programming

Page 52

• Device and Driver Model
• Loadable vs built-in drivers
• Kernel space vs user space
• Kernel memory allocation
• Synchronization
• DMA
• Interrupt handlers
• Resource (I/O space) request
• Hardware access functions (read/write)
• Proc and sysfs filesystems
• Debugging
• Driver types
• Netfilter architecture

Linux Device Driver and Kernel Programming

Page 53

Common Driver Interface

 init and exit
declared with module_init and module_exit macros

¬ called at system initialization/shutdown time
¬ for loadable modules, called when module inserted or removed

from kernel
 register/unregister device_driver struct:

struct device_driver vx1xx_driver = {
 .name = "vx1xx-uart",
 .bus = &platform_bus_type,
 .probe = vx1xx_probe,
 .remove = vx1xx_remove,
 .suspend = vx1xx_suspend,
 .resume = vx1xx_resume,
};

¬ bus: used in device-driver matching (see next slide)
¬ probe and remove

– called when device registered/unregistered during system
initialization

– for “pluggable” devices, called when device “insertion” or “removal”
detected

¬ suspend and resume
– called by power management subsystem to inform device to power

down/up

Page 54

Device and Driver Model

 Goal: separate mechanism (driver) from config info (device)
 Device specification

Provided in platform-specific code (vx115_vep.c)
 Device hierarchy (parents)
 Registration

platform_add_devices, amba_device_register in board setup
function

driver_register in driver init function; bus type in device_driver
struct

 Device and driver matching and configuration
 registering devices and drivers causes match to occur

¬ driver's probe function called to configure driver with handle to
device data

often text-based match (ex. platform devices)

Page 55

Loadable vs Built-in Drivers

 Virtually all drivers support both modes
 module_init macro

built-in driver: places function pointer in init section so will
be called during system initialization

 loadable module: just aliases function to init_module; called
by module loader

 __init function qualifier: places function in init section so
memory can be reclaimed after boot

 lsmod, insmod, rmmod and modprobe applications
 lsmod: list currently loaded modules
 insmod: loads specified module (need complete path)
modprobe: loads specified module and all modules it

depends on
¬ looks in /lib/modules for named module
¬ uses modules.dep file generated by depmod to resolve module

dependencies
¬ if you add a new module, need to add new modules.dep to use

modprobe

Page 56

Kernel Space vs User Space

 Each user application uses same virtual address space (usually
0-based)
MMU maps each app's virtual addresses to its personal

physical pages; map changes on context switch
 if give kernel pointer to userspace buffer and get context

switch, what happens to buffer reference? :-(
 copy_from_user, copy_to_user

 transfer between user process buffer and kernel buffer
make sure pages aren't swapped out (not an issue in most

embedded systems)
 mmap and remap_pfn_range

map a kernel buffer so it can be directly accessed from user
application

mmap function provided as part of driver interface (see
below)

 kernel function remap_pfn_range does actual mapping

Page 57

Kernel Memory Allocation

 kmalloc, kfree: allocate and free memory in kernel space
allocates virtually and physically contiguous buffer, returns

virtual address
 flag specifies whether can sleep or not during allocation

 vmalloc
allocates virtually contiguous buffer , returns virtual

addresses
 can allocate larger buffers, but less efficient

Page 58

Lists

 Use built-in Linux list functions
gives doubly-linked list
 struct list_head
 list_add, list_add_tail, list_splice, list_del, list_empty
 list_entry(entry, type, member);

 container_of macro
get structure containing specified field

¬ specified field need not be first field
 container_of(ptr, type, member)
 list_entry just #defined to container_of

Page 59

Synchronization: Semaphores and Spinlocks

 semaphores and mutexes
usual semaphore semantics
down_interruptible, down_trylock, up
applicable to thread context only (suspends)

 spinlocks
 just disable/reenable interrupts in uniprocessor (non-SMP)

system
 spin_lock_irqsave, spin_unlock_irqrestore
protects against threads and ISRs

Page 60

Synchronization: Completions

 wait until signalled that some operation is complete
 use completion struct and functions

 struct completion c;
 init_completion(&c);
wait_for_completion(&c); // wait until completion signalled
 complete(&c); // to wake up a process waiting for completion

 wait applicable in thread context only (suspends); completion
signalled from thread or ISR context

Page 61

Synchronization: Wait Queues

 sleep until awakened and specified condition true
 wait_event_interruptible(wait_queue, condition);

wait on queue until awakened and condition true
 wake_up_interruptible(wait_queue);

awaken waiting task(s)
 wait applicable in thread context only (suspends); wake_up

can be signalled from thread or ISR context

 Notes
oddly, can't assume condition true when awakened

¬ might be awakened due to signal
¬ might have been out-raced by another task

 should protect condition test with semaphore/spinlock
¬ guard against race conditions

Page 62

DMA

 buffer allocation
dma_map_single/dma_unmap_single with kmalloc/kfree

¬ kmalloc/kfree handle allocation
¬ map functions handle cache coherency

– transfer ownership of buffer to/from DMA controller
– extra direction argument makes cache sync more efficient

¬ also have dma_map_sg, dma_unmap_sg for mapping scatter-
gather lists

dma_alloc_coherent, dma_free_coherent
allocates non-cacheable buffer; less efficient

 kernel DMA interface
 request_dma, free_dma: request/free a DMA channel
 set_dma_addr, set_dma_count, set_dma_mode, set_dma_sg:

configure DMA channel
¬ Note that set only single address; assumes DMA “target”

dedicated for each channel
enable_dma, disable_dma: start or end DMA transfer

Page 63

Interrupt Handling

 Interrupt registration (low-level ISR)
 request_irq(unsigned int irq, irq_handler_t handler, unsigned

long flags, char *name, void *context);

 Interrupt handler (low-level)
 irqreturn_t irq_handler(int irq, void *context, struct pt_regs

*regs);
 return IRQ_HANDLED, IRQ_NONE (not handled)

 Synchronization
Use spinlocks to protect against low-level IRQ handler

 “Bottom halves”
Defer interrupt processing - “high-level” interrupt handlers
Use tasklets and work queues to carry out processing

Page 64

Interrupt Handling: Tasklets

 Context
 run in interrupt context (with interrupts enabled), so can't

suspend
done as a softirq: run after all hardware interrupts

processed
¬ kernel calls do_softirq at end of low-level interrupt processing

 runs once when scheduled

 Use
 struct tasklet_struct tasklet;
void tasklet_handler(unsigned long data);
 tasklet_init(&tasklet, tasklet_handler, data);
 tasklet_schedule(&tasklet); // schedule handler to be

executed

 Synchronization
Use spinlocks to protect against tasklet

Page 65

Interrupt Handling: Work Queues

 Context
 run in process context, so can suspend
 run as kernel thread, so higher priority than user threads
 runs once when scheduled

 Use
 struct work_struct work;
 void work_handler(void *context);
 INIT_WORK(&work, work_handler, context);
 schedule_work(&work);
Note: changed in 2.6.20; context replaced with pointer to

work struct...

 Synchronization
Use semaphore to protect against work queue

Page 66

Resource Requests

 Request access to hardware region (registers, etc.)
 request_region, release_region: I/O space request
 request_mem_region, release_mem_region: memory region

requests

Page 67

Resource Requests and Hardware Access

 Resource (I/O space) request
Request access to hardware region (registers, etc.) during

driver initialization
 request_region, release_region: I/O space request
 request_mem_region, release_mem_region: memory region

requests

 Hardware access functions (read/write)
 readb, readw, readl, writeb, writew, writel
 read/write 8/16/32-bit quantity from specified (virtual)

address
 Preferable for memory access over direct pointer references

¬ intends to make drivers portable to systems with separate I/O
space

¬ Less relevant with embedded system

Page 68

Proc Filesystem

 “Virtual” directory created and maintained by kernel
appear as entries under /proc

 Provides control and statistics interface from userspace into
drivers
 just read like would with normal files (can use cat, e.g.)
 Functions implemented by drivers which wish to expose an

interface
 Use

#include <linux/proc_fs.h>
 create_proc_entry, remove_proc_entry

¬ request kernel to create entry for driver (usually during driver
init)

¬ specify parent directory within /proc, functions for read and write
proc read function

¬ just return info about driver (often text)
proc write function

¬ use supplied info to control the driver

Page 69

Debugging

 JTAG
best for kernel code and built-in drivers
not so useful for loadable modules or app code

 printk
Usual method of kernel and driver debugging: print

messages to system log and console
 procfs

Can read out driver statistics/state
 objdump

 Inspecting binaries (symbol info, disassembly, etc.)
 ksymoops

Decode kernel stack dumps into readable messages

Page 70

Driver Types

 Driver interface depends on type
 Character

 stream- or character-oriented devices (UARTS, GPIOs,
 Block

Block-oriented devices (disks, etc.)
 Network

Drivers for network devices (Ethernet, Wifi, etc.)
 Higher-level frameworks

Driver provides interface required by higher-level framework
USB
MTD
SD/MMC
 ...

Page 71

Character Drivers

 Interface: file operations (fops) struct
struct file_operations {

– struct module *owner;
– int (*open) (struct inode *, struct file *);
– int (*release) (struct inode *, struct file *);
– ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
– ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
– int (*mmap) (struct file *, struct vm_area_struct *);
– loff_t (*llseek) (struct file *, loff_t, int);
– unsigned int (*poll) (struct file *, struct poll_table_struct *);
– int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
– int (*flush) (struct file *);
– int (*fsync) (struct file *, struct dentry *, int datasync);
– ... (many more fields – note order changed!)

};

 Implement functions for open, close, read, write, seek, etc.
¬ Can leave many null if don't care about operation

Page 72

Character Driver Registration

 major/minor number reservation
major/minor used to map /dev node to driver
 register_chrdev_region(dev_t from, unsigned count, const

char *name)
– reserve range of major/minor numbers for device

 driver registration
have driver data structure

¬ contains fields for whatever driver needs to do its work (buffers,
lists, ...)

¬ has embedded cdev struct
use cdev_init(cdev, fops) to initialize embedded cdev struct

with file ops
use cdev_add(cdev, device_number, range) to register

embedded cdev struct with kernel

Page 73

Driver Struct, Inodes and Files

 Issue: how to get driver data structure for use in fops functions
 can use static struct, but limits number of devices supported

by driver
better: allocate struct for each device, stash so passed in as

function arg

 Approach: stash device struct pointer in file structure
open function passes inode and file pointers

¬ inode has pointer to driver's cdev
– was initialized when cdev_init called

extract pointer to driver struct which contains cdev struct
with container_of

 set file->private_data field so can retrieve driver struct
when get other calls
¬ other file_operations functions pass just file struct, not inode

Page 74

Activity and Resources

 Activity
use objdump and ksymoops
Create simple character driver

¬ File ops interface
¬ Proc interface
¬ See example driver source code

– Can build on x86 platform; has “device” module that registers device
that matches with driver

 Resources
 Linux Device Drivers, 3rd edition, Alessandro Rubini, O'Reilly

¬ online version at http://lwn.net/Kernel/LDD3/ (pdf)
¬ 2nd edition in HTML: http://www.xml.com/ldd/chapter/book/

 Linux Kernel Development, Robert Love, Sams

Embedded Linux
Application Development
Overview

Page 76

C development
Posix development
Makefiles
Driver interface
Library linking
Debugging
C++
Shell script development

Activities
Resources

Embedded Linux Application Development

Page 77

 Just regular Unix Posix development
 processes: fork, exec, wait
 threads: pthreads and attributes
 synchronization: condition variables, semaphores and mutexes
 communication: pipes, queues, shared memory
 file I/O: open, close, read, write
 signals
 sockets for networking

C Application Development

Page 78

 Driver interface
 file nodes and standard file operations

 Libraries
Toolchain provides standard C libs
Specify paths to custom libs and headers

 C++
 standard C++ development
Use libstdc++

C Application Development (cont.)

Page 79

 Debugging with printf
Send messages to console or system log

 Debugging with gdbserver
Build gdbserver for platform
Build app with debugging symbols (-g when compiling)
Start app to be debugged with gdbserver

¬ gdbserver <serial-device> <app-to-debug>
¬ gdbserver /dev/ttyS1 /bin/ls

Connect to gdbserver over serial with gdb-capable debugger
¬ gdb, Insight, etc.

Debugging

Page 80

 Use standard apps in shell script
 Pipes, redirection
 if, case
 Environment variables
 Notes

Different shell variants have different syntax
Arithmetic a pain

Shell Script Development

Page 81

 Activity
Debug an app with gdbserver

 Resources
POSIX specs: http://www.unix.org/single_unix_specification/
Advanced Programming in the UNIX Environment, Richard

Stevens, Addison-Wesley, 1992, http://www.kohala.com/start/

Activity and Resources

Open-Source
Software Licenses

Page 83

Open-Source Software Licenses

GPLv2
Common properties
LGPL
MIT, modified-FreeBSD

Resources

Page 84

 Use at your own risk
no guarantee
don't sue me if it doesn't work

 Issues
unknowingly incorporating software which contains patented

material
 combining software with incompatible licenses

Common Properties

Page 85

 GNU Public License
 Must deliver source together with binary to customers

no customer, no delivery (internal corporate uses)
no requirement to “feed back” mods or make them “publicly”

available – just must make source available to “customer” if
deliver software

 Examples
 Linux kernel

 Pros
 tend to get mods fed back to common software baseline –

everybody benefits
 Cons

 linking extends GPL to non-GPL software - must provide source
for all software linked with GPL software

GPLv2

Page 86

 Lesser or “Library” GPL
Software linked with LGPL software not covered by LGPL -

source delivery not required
Source code of LGPL code itself (together with any mods) must

be made available to customer
 Examples

glibc
 Pros

Has allowed for non-open-source Linux application
development
¬ Situation less clear for kernel code such as loadable modules

 Cons
Still required to deliver source of libraries

LGPL

Page 87

 No source delivery required
 Pros

preferred by businesses worried about exposing proprietary
stuff

 Cons
has led to fragmentation (e.g., multiple BSD implementations)
 slower progress (e.g., no good open-source Flash filesystem

implementation in BSD's, even though iPhone uses BSD-
derived OS)

MIT, Modified-BSD

Page 88

 Open-source software licenses described:
http://www.gnu.org/licenses/license-list.html

 Understanding Open Source and Free Software Licensing,
Andrew St. Laurent, O'Reilly, 2004,
http://www.oreilly.com/catalog/osfreesoft/book/

Resources

Linux Tools and Resources

Page 90

 gcc cross-compilation toolchain
Pre-built: Code Sourcery: http://www.codesourcery.com/
Build your own: Dan Kegel's CrossTool:

http://kegel.com/crosstool/
 Insight (includes gdbserver): http://sourceware.org/insight/
 Ksymoops

Tools

Page 91

 Linux Device Drivers, 3rd edition, Alessandro Rubini, O'Reilly
online version at http://lwn.net/Kernel/LDD3/ (pdf)
2nd edition in HTML: http://www.xml.com/ldd/chapter/book/

 Linux Kernel Development, Robert Love, Sams
 Building Embedded Linux Systems, Karim Yaghmour, O'Reilly
 Embedded Linux: Hardware, Software and Interfacing, Craig Hollabaugh,

Addison Wesley
 Understanding Open Source and Free Software Licensing, Andrew St.

Laurent, O'Reilly, 2004
 Advanced Programming in the UNIX Environment, Richard Stevens,

Addison-Wesley
 Kernel Documentation subdirectory

Resources - Books

Page 92

 Linux kernel cross-reference website: http://lxr.linux.no/
 Linux Device Drivers, 3rd edition, Alessandro Rubini, O'Reilly

online version at http://lwn.net/Kernel/LDD3/ (pdf)
2nd edition in HTML: http://www.xml.com/ldd/chapter/book/

 ARM Linux website: http://www.arm.linux.org.uk/
arm-linux-kernel mailing list

 CELF Wiki: http://tree.celinuxforum.org/pubwiki/moin.cgi
 CELF Embedded Linux Conference:

http://www.celinux.org/elc2007/index.html
 Linux Journal: http://www.linuxjournal.com/
 Linux Magazine: http://www.linux-mag.com/
 POSIX specs: http://www.unix.org/single_unix_specification/

Resources - Web

Page 93

 Porting the Linux Kernel to a New ARM Platform (2.4-series kernel):

http://linux-
7110.sourceforge.net/howtos/netbook_new/porting2arm_ale
ph.pdf

 Linux Porting Guide (uses MIPS as example):
http://www.embedded.com/shared/printableArticle.jhtml?articleID=990
0048

 Linux kernel source repository: http://www.kernel.org
 Busybox: http://www.busybox.net
 uClibc: http://www.uclibc.org/
 Qtopia: http://www.trolltech.com/products/qtopia/phone.html
 Open-source software licenses described:

http://www.gnu.org/licenses/license-list.html

Resources – Web (cont.)

Page 94

